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We investigate the possibility of using proper orthogonal decomposition (POD) in
reconstructing complete flow fields from gappy data. The incomplete fields are created
from DNS snapshots of flow past a circular cylinder by randomly ommiting data
points. We first examine the effectiveness of an existing method and subsequently
introduce modifications that make the method robust and lead to the maximum
possible resolution at a certain level of spatio-temporal gappiness. We simulate three
levels of gappiness at approximately 20%, 50% and 80% in order to investigate the
limits of applicability of the new procedure. We find that for the two lower levels
of gappiness both the temporal and spatial POD modes can be recovered accurately
leading to a very accurate representation of the velocity field. The resulting resolution
is improved by more than five times compared to the existing method. However,
for 80% gappiness only a few temporal modes are captured accurately while the
corresponding spatial modes are noisy. We explain this breakdown of the method
in terms of a simple perturbation analysis. This new methodology can be a building
block in an effort to develop effective data assimilation techniques in fluid mechanics
applications.

1. Introduction
We address in this work the issue of data assimilation in fluid mechanics, using

the two-dimensional flow past a circular cylinder as a prototype problem. While data
assimilation is routinely used in climate and ocean modelling, this is not the case with
more classical fluid mechanics applications. However, the recent rapid developments
in quantitative imaging techniques, e.g. particle image velocimetry (PIV) and magnetic
resonance imaging (MRI), and the simultaneous advances in large-scale simulation
open the possibility for integrating seamlessly simulation and experiment. In the
new computational paradigm, simulation and experiment will become a symbiotic
feedback system for diverse flow-based applications, e.g. controlled flow–structure
interactions, smart combustion systems, active microfluidic networks, etc.

The type of data assimilation most appropriate for fluid mechanics will depend on
the specific application. In a typical case, the initial flow simulation will be based on
parameters and spatio-temporal modes extracted from a single state or an ensemble
of states of the experiment with subsequent continuous injection of new data into
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the ongoing simulation. In some cases, the output of the simulation may be used to
directly influence the experimental input, e.g. to steer the measurements to the proper
location. In other cases, there may be only a feed-forward input from the experiment
to the simulation for predicting accurately the evolution of a given experimental state.

At the heart of this integration is the ability to reconstruct flow fields from a
finite number of experimental observations at a controlled level of accuracy. Even
for the relatively simple experiment on flow past a cylinder, information due to
‘shadowing’ (i.e. obstructed view) and proximity to the boundaries may be missing or
the frequency of the measurements may be below the required temporal resolution of
the corresponding simulation. Therefore, we have to work with gappy data where the
spatio-temporal regions of ‘missingness’ are known in advance or where missingness
occurs at random (MAR). This problem is of course not new and researchers have
been working on it for many decades. One of the first effective approaches was
developed by Yates (1933) who proposed filling-in missing data with least-squares
estimates. This may at first seem to be circular and of little practical use but it turns
out to be quite effective in exploiting redundancy in the available measurements.
Several statistical approaches for data imput building on the original ideas of Yates are
presented in Little & Rubin (2002). Among them, local Kriging is an effective statistical
method combined with least squares and has been used with success in geology and
other fields to interpolate spatial data. Unlike other estimation procedures, Kriging
provides a measure of the error and associated confidence in the estimates (Stein 1999).
In the current paper, we will compare local Kriging against the proposed new method
for reconstructing gappy fields.

In this work we follow a deterministic approach based on proper orthogonal
decomposition (POD) combined with the least-squares approach. This method was
first proposed by Everson & Sirovich (1995) for image reconstruction and it has
been used with success in Tan, Willcox & Damodaran (2003) for steady flow past an
airfoil. The method breakes down if there are any time instants for which the data are
missing everywhere (i.e. absence of a snapshot) or if there are any spatial subregions
for which the data are missing at all times. Here we apply this method to unsteady
flow past a circular cylinder and investigate ways of improving its performance. The
fundamental question we address is: What is the maximum possible resolution that
can be achieved given a certain degree of gappiness in the data.

This is a rather complex issue as it could also depend on the type of missingness,
for example close to the cylinder boundaries the relative importance of missing data
is higher. However, POD provides the best representation (in the average sense)
for a given field and produces a hierarchical set of spatio-temporal scales. This, in
turn, helps in establishing accuracy criteria and thus it addresses the question of
maximum possible resolution. Indeed, in the current work we have extended the
Everson–Sirovich approach in a way that leads to the best possible reconstruction
independent of the initial guess for filling in the missing data. In addition, we have
developed and verified a robust criterion for selecting the optimum number of modes
for reconstruction.

We have selected the flow past a cylinder as a test problem due to the previous
experience with this flow that shows that a low-dimensional representation indeed
exists (Ma, Karamanos & Karniadakis 2000; Ma et al. 2003; Cao & Aubry 1993;
Deane et al. 1991). This is true both in two and three dimensions but in this paper
we concentrate on reconstructing two-dimensional gappy fields. We have investigated
two states at Reynolds number 100 and 500 (based on the cylinder diameter) and
three degrees of gappiness of approximately 20%, 50% and at 80%.
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The paper is organized as follows. In § 2 we review the method proposed in
Everson & Sirovich (1995) and we present a modification that makes the method
robust and significantly more accurate. We also address the question of temporal
versus spatial resolution, which becomes particularly important in gappy fields. In § 3
we present the main results, and finally in § 4 we discuss some of the open issues of
the new methodology in the context of data assimilation in fluid mechanics.

2. POD theory and gappy data
In this section we first present the algorithm of Everson & Sirovich and subsequently

we present an extended procedure that eliminates dependence on the initial condition.
It also leads to a significant increase in resolution given a specific set of gappy data.
We then address the question of resolution equivalence in space–time in the case of
incomplete data sets.

2.1. Initial-condition-independent method

Let us consider a (d-dimensional) vector flow field u(x, t) ∈ (L2(Ω × T ))d defined in the
spatio-temporal domain (Ω × T ). We assume that we have available a finite number
N of snapshots of the flow field. We can then look for a biorthogonal representation
of u (x, t) in the form (Aubry, Guyonnet & Stone 1991; Aubry 1991)

u (x, t) =

N∑
k=1

λkΦk (x) ψk (t) , (2.1)

where Φk (x) and ψk (t) are the orthonormal spatial and temporal modes, respectively.
We would like to determine the unknown functions Φk(x) and ψk(t) by minimizing

the functional (in the energy norm)

F [Φk, ψk] =

∥∥∥∥∥u(x, t) −
N∑

k=1

λkΦk(x)ψk(t)

∥∥∥∥∥
2

L2

=

∫
T

∫
Ω

(
u(x, t) −

N∑
k=1

λkΦk(x)ψk(t)

)
·
(

u(x, t) −
N∑

k=1

λkΦk(x)ψk(t)

)
dx dt

(2.2)

with respect to an arbitrary variation of Φk(x) and ψk(t). This minimization leads to
the Euler–Lagrange equations∫

Ω

u(x, t) · Φj (x) dx = λjψj (t), (2.3)∫
T

u(x, t)ψj (t) dt = λjΦj (x). (2.4)

Following Aubry & Lima (1995a,b), Aubry et al. (1991) and Aubry, Guyonnet &
Lima (1995) we define the linear integral operators U and U ∗:

(UΦj )(t) =

∫
Ω

u(x, t) · Φj (x) dx, (2.5)

(U ∗ψj )(x) =

∫
T

u(x, t)ψj (t) dt, (2.6)
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where U ∗ is the adjoint of U . By inserting the biorthogonal decomposition of u(x, t)
from equation (2.1) in (2.3) and (2.4) we find

UΦj = λjψj , (2.7)

U ∗ψj = λjΦj . (2.8)

These are called dispersion relations and they provide the link between the spatial and
the temporal evolution of the system. If we apply the operator U ∗ to (2.7) and the
operator U to (2.8) we obtain the eigenvalue problems

U ∗UΦj =

∫
Ω

S(x, x ′)Φj (x ′) dx ′ = λ2
jΦj , (2.9)

UU ∗ψj =

∫
T

T (t, t ′)ψj (t
′) dt ′ = λ2

jψj . (2.10)

The operators U ∗U and UU ∗ are symmetric and positive. The kernel of U ∗U is
the two-point spatial correlation while the kernel of UU ∗ is the two-point temporal
correlation, given respectively by

S(x, x ′) =

∫
T

u(x, t) · u(x ′, t) dt (2.11)

T (t, t ′) =

∫
Ω

u(x, t) · u(x, t ′) dx. (2.12)

The symmetric version (see Aubry 1991) of the proper orthogonal decomposition (2.1)
corresponds to the spectral analysis of the operator U and consists of square roots of
proper values (eigenvalues) and proper functions (eigenfunctions) of the correlation
operators U ∗U and UU ∗. We order the eigenvalues as

λ2
1 � λ2

2 � · · · λ2
N � 0.

The above formulation assumes the completeness of the flow field in the spatio-
temporal domain. However, modifications are required if there exists a spatio-temporal
region in which the field u(x, t) is missing or is corrupted, thus leading to incomplete
dynamics. We would like to reconstuct this gappy field using the POD orthogonal
modes. This is the problem first considered in Everson & Sirovich (1995) for an image
reconstruction static problem. The gappy field can be written in the following way:

ug(x, t) = (u(x, t)m1(x, t), v(x, t)m2(x, t), w(x, t)m3(x, t)) (2.13)

where mj (x, t) tracks the spatio-temporal missingness. It is defined by

mj (x, t) =

{
1 if the j th component of the field is known in (x, t)
0 if the j th component of the field is missing in (x, t).

(2.14)

A similar spatio-temporal modulation of travelling wave solutions was studied
in Aubry, Lima & Rahibe (2003); see also Aubry & Lima (1995a). The procedure
proposed by Everson & Sirovich completes the missing spatio-temporal dynamics
starting from a certain initial guess for the unknowns and proceeds iteratively. At the
heart of the method is again the minimization of a functional but in a new norm,
defined in the space–time domain where the field is known. Let us denote by ũ (x, t) a
completed field obtained based on some initial guess. The standard Everson–Sirovich
method employs the time-average value at that location as initial guess. Subsequently,
we perform POD of ũ (x, t) to obtain the guessed spatial and temporal modes. This
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decomposition has the form

ũ (x, t) =

N∑
k=1

λ̃kΦ̃k (x) ψ̃k (t) , (2.15)

where ψ̃k(t) is the kth guessed temporal mode and Φ̃k(x) is the kth guessed spatial
mode. The new functional for minimization is then

Fg[ξ̃k] =

∥∥∥∥∥ũ(x, t) −
M∑

k=1

Φ̃k(x)ξ̃k(t)

∥∥∥∥∥
2

Gappy

=

(
ũ(x, t) −

M∑
k=1

Φ̃k(x)ξ̃k(t), ũ(x, t) −
M∑

k=1

Φ̃k(x)ξ̃k(t)

)
Gappy

, (2.16)

where the ‘Gappy’ norm is defined on the support of ũ(x, t), i.e. the spatio-temporal
domain on which the values of ũ(x, t) are known with certainty. M is the number of
modes that we use in the reconstruction process, which is different from the number
of snapshots N (M � N ). Minimization of the new functional (2.16) leads to the linear
system of algebraic equations

M∑
j=1

(Φ̃ i(x), Φ̃j (x))Ωg (t)ξ̃j (t) = (ũ(x, t), Φ̃ i(x))Ωg (t), i = 1, . . . . , M. (2.17)

The unknowns are the new (non-normalized) temporal modes {ξ̃k(t)}, and Ωg(t) is
the gappy spatial domain at time t . Note that the M × M matrix

[K̃]ij = (Φ̃ i(x), Φ̃j (x))Ωg (t) (2.18)

has time-dependent coefficients.
The Everson–Sirovich method is based on solving the system (2.17) for each guess

and consists of the following steps:
(a) use time-average values as initial guesses at the locations mj (x, t) = 0 to obtain

N snapshots of an initial complete field ũ(x, t);

(b) perform POD of ũ(x, t) to obtain N guessed spatial modes {Φ̃ i(x)};
(c) select the number of modes M to be employed in the reconstruction;
(d) construct the matrix [K̃]ij = (Φ̃ i(x), Φ̃j (x))Ωg (t) and the vector [ f̃ ]i = (ũ(x, t),

Φ̃ i(x))Ωg (t);

(e) solve the M × M linear system: K̃ξ̃ = f̃ for the unknowns {ξ̃k(t)};
(f ) construct a new vector field as follows:

w̃ (x, t) =

M∑
k=1

Φ̃k (x) ξ̃k (t) (2.19)

and overwrite the previous guess, i.e. set

ũ(x, t) = w̃(x, t) only if mj (x, t) = 0;

(g) upon convergence stop, otherwise go to (b).
Details on the convergence will be given in the flow examples in the next section.

The method breaks down when the matrix K̃ is singular. This includes, for example,
the case in which a snapshot is missing (i.e. Ωg(t

∗) = 0). Also, the method breaks down
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if there are any spatial subregions for which the data is missing at all times. With the
above procedure the optimum number of modes Mo in the reconstruction depends
on the initial guess. Specifically, by optimum number of modes we mean the number
Mo for which the error is the smallest among all possible converged reconstructions.

To this end, we have developed the following extension of the Everson–Sirovich
procedure that does not depend on the initial guess and, in addition, enhances
accuracy significantly. This will be demonstrated in the next section. We summarize
here the main steps of the extended procedure.

Extended procedure
(a) Perform the standard Everson–Sirovich procedure but employ only M = 2

modes in the reconstruction.
(b) Use the converged result from the previous step as a new initial guess and apply

the Everson–Sirovich procedure but now employ M = 3 modes in the reconstruction.
(c) Proceed similarly for the nth iteration until the eigenspectrum obtained does

not change anymore.
Although more costly, our results suggest that the iterative procedure leads to the

maximum possible resolution of the true eigenspectrum and thus of possible accuracy
in reconstructing the flow field. The final solution will only depend on the degree of
gappiness and not on the initial guesses in the gappy subregions. Alternatively, one
could stop at an earlier iteration if accurate resolution only of the first few modes is
desired, that is accept incomplete convergence in the eigenspectrum.

2.2. Temporal versus spatial resolution

For complete data snapshots a certain spatial mode is resolved accurately if the
corresponding temporal mode is resolved accurately (Aubry 1991; Sirovich 1987). In
this section we will show that this is not necessarily true for perturbed data – the
perturbation being the converged error for the reconstructed field. To this end, we
start with equation (2.4) ∫

T

ũψ̃k dt = λ̃kΦ̃k. (2.20)

Here the tilded quantities are the perturbed ones, that is the ones obtained from a
converged guess for the missing data. We also define

ũ = u + δu, ψ̃k = ψk + δψk, λ̃k = λk + δλk, Φ̃k = Φk + δΦk (2.21)

where the deltas denote perturbations with respect to the ‘true’ quantities.
By inserting equations (2.21) into (2.20) we obtain∫

T

(uψk + δuψk + uδψk + δuδψk) dt = λkΦk + λkδΦk + δλkΦk + δλkδΦk. (2.22)

In adddition, for the ‘true’ field and the ‘true’ spatial and temporal modes we have
the relationship (2.4) and inserting it into (2.22) gives∫

T

(δuψk + uδψk + δuδψk) dt = λkδΦk + δλkΦk + δλkδΦk. (2.23)

Let us now assume that the observed kth temporal mode ψ̃k is perfectly resolved, that
is

δψk = 0 (ψ̃k = ψk), δλk = 0 (λ̃k = λk). (2.24)
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By inserting the conditions (2.24) in (2.23) we obtain∫
T

δuψk dt = λkδΦk =

∫
T

δuψ̃k dt

and therefore

δΦk(x) =
1

λ̃k

∫
T

δu(x, t)ψ̃k(t) dt. (2.25)

The corresponding formula for the perturbation in the kth temporal mode, given a
perfectly resolved spatial mode (i.e. δΦk = 0, δλk = 0) is

δψk(t) =
1

λ̃k

∫
Ω

δu(x, t) · Φ̃k(x) dx. (2.26)

Equation (2.25) shows that almost certainly we have a perturbation in the kth
spatial mode even though the corresponding temporal mode may be perfectly resolved.
Similarly, equation (2.26) shows that almost certainly we have a perturbation in the
kth temporal mode even though the corresponding spatial mode may be perfectly
resolved. As we will see in the flow examples in the next section, this perturbation is
negligible for a small or modest degree of gappiness but for very large gappiness we
find that the temporal resolution is different from the spatial resolution. Given this
discussion, the reconstruction procedures that we presented in the previous section
optimize the temporal resolution.

3. Flow reconstruction
We consider here two-dimensional incompressible flow past a circular cylinder at

Reynolds number Re =100 and Re = 500. We have simulated the time-dependent
flow using the spectral element/hp method (Karniadakis & Sherwin 1999) on a mesh
consisting of 412 spectral triangular elements of order P =8. After we had established
fully periodic states, we extrated from the direct numerical simulation (DNS) 40
and 50 equidistant snapshots, for Re= 100 and Re= 500, respectively. Subsequently,
we generated a spatio-temporal gappiness by randomly discarding the values of the
solution on some nodes in every snapshot. The spatio-temporal ‘gappiness percentage’
here is defined to be the number of nodal data points that are missing with respect to
the total number of nodal data points. Since the spectral elements are not equal and
they also have different shape, this gappiness percentage is not directly related to the
spatial gappineness at every time. In other words a 20% spatio-temporal gappiness
in a region where the grid is very coarse is not the same as 20% gappiness where
the grid is very fine. Moreover, in order to simulate an ‘experimental-like’ dataset,
we also implemented the possibility of a different spatio-temporal gappiness close to
the cylinder. We also note that disregarding information at some grid points affects
greatly the Lagrangian interpolation process involved in the spectral element method.
This, in turn, implies that the solution obtained from the gappy field, without any
treatment, will be greatly oscillatory. Figure 1 shows the computational domain,
and in table 1 we provide specific details on the four different cases that we have
investigated.

3.1. Reconstruction based on the Everson–Sirovich procedure

We have investigated the reconstruction of velocity fields at both Re = 100 and
Re = 500 but the results are very similar, so here we will present primarily the results
for Re = 100 (case A). A typical result of the convergence history from the application
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Figure 1. Computational domain and a close-up of the boundary region.

Case Reynolds number %Gappiness (Domain 1) %Gappiness (Domain 2)

A 100 18.9 U 19.5 V 23.4 U 22.9 V
B 500 21.2 U 21.2 V 21.2 U 21.1 V
C 500 48.4 U 50.0 V 46.7 U 44.7 V
D 500 75.4 U 76.3 V 79.6 U 76.2 V

Table 1. Definition of the gappy data fields.

of the Everson–Sirovich method, using a time-average initial guess, is shown in
figure 2; specifically, the relative error in the two velocity components is plotted
versus iteration number. The relative error for the streamwise component is defined
as ∥∥u

(i)
M − u

∥∥2

2

‖u‖2
2

≡

∫
T

∫
Ω

(
ũ

(i)
M (x, t) − u(x, t)

)2
dx dt∫

T

∫
Ω

(u(x, t))2dx dt

, (3.1)

where ũ
(i)
M (x, t) denotes the M-modes reconstructed streamwise component of the

velocity field at the current ith iteration, while u(x, t) denotes the ‘true’ component
obtained from the DNS before the the random data-discarding process. The relative
error for the crossflow velocity component is defined similarly to equation (3.1).
The relative error is plotted for several values of M coresponding to different
reconstructions. The best case here is obtained for Mo = 8 as it corresponds to
the lowest error in both the u and the v components. The convergence history for
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Figure 2. Case A: convergence history of the relative error for the steamwise (a) and crossflow
(b) velocity components. The initial guess is taken as the time average of the available data.

0 10 20 30 40
10–15

10–10

10–5

100

Mode

E
ig

en
va

lu
es

True spectrum
4 Modes
8 Modes
12 Modes
16 Modes
20 Modes

Figure 3. Case A: comparison of reconstructed with ‘true’ spectra. The arrow indicates the
deviation of the Mo =8 eigenspectrum from the ‘true’ one. The initial guess is taken as the
time average of the available data.

Re = 500 at approximately the same gappiness level (case B) is similar except that the
best reconstruction is achieved with Mo = 10 modes. The main result for both cases is
that the error in the reconstruction does not decrease monotonically with the number
of modes used in the reconstruction. This is not too surprising as including more
higher (not resolved) modes may introduce noise that may degrade the quality of the
reconstructed solution. For example, in case A reconstruction with M = 12, 16 or 20
leads to reconstructed fields of lower quality than for Mo = 8. The following few plots
will demonstrate this result more systematically.

First, we compare the eigenspectra from the reconstructed fields to the ‘true’
spectrum from the full DNS in figure 3. We see that the case with Mo = 8 resolves the
spectrum more accurately than all other reconstructions but it misses the upper part
(high wavenumbers) of the ‘true’ spectrum. However, it is still an open question if
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Figure 4. Case A: comparison of the 8th spatial POD mode using (b) Mo =8 and (c) M = 16
with (a) the DNS (‘true’) mode. Left: streamwise component; right: crossflow component.

this is the maximum number of (temporal) modes that can be resolved for the degree
of gappiness that we consider here (case A). We will revisit this issue in the next
section but first let us document that indeed with Mo = 8 we resolve accurately
all the corresponding spatial modes up to the deviation points obtained from
figure 3; see the arrow for the case Mo =8. We note that the number of resolved
modes corresponding to the deviation point in this plot is very close to the optimum
number of modes Mo in this case. This is a typical result for low to modest levels of
gappiness.

In figure 4 we plot the two components of the 8th spatial POD mode from the
reconstructed fields as well as the original DNS field. We see that for Mo = 8 we can
resolve this mode but for M = 16 the reconstruction is not as accurate, in accord with
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Figure 5. Convergence history of the total relative energy using different numbers of modes
for reconstruction. (a) Case A, time-average initial guess. (b) Case D, random initial guess.

our findings from the eigenspectrum comparison. Comparison of lower modes, e.g. the
4th mode, shows that both reconstructed fields resolve this mode accurately. We find
that in this case with relatively small gappiness a certain temporal mode is resolved
accurately if the corresponding spatial mode is resolved accurately. This result has
been obtained before (e.g. see Sirovich 1987; Aubry et al. 1993, 1991) for complete
data sets. However, as we indicated in § 2.2 this may not be true in general for gappy
fields. We will return to this point later when we study case D corresponding to the
highest level of gappiness.

3.1.1. Criterion for optimum number of modes

In the discussion so far we have assumed that we know the ‘true’ eigenspectrum
in order to find the optimum number of modes. Next, we propose a criterion based
on the total energy that leads to the same result and does not require knowledge of
the ‘true’ solution. To this end, we start from the observation that the convergence
history of the total energy, after a possible initial oscillatory path, typically becomes
monotonic. This is demonstrated in the two plots in figure 5.

Specifically, in figure 5 we plot the convergence history of the total energy
normalized with the ‘true’ energy of the system, defined as

eM ≡

∫
T

∫
Ω

ũ(i)
M (x, t) · ũ(i)

M (x, t) dx dt∫
T

∫
Ω

u(x, t) · u(x, t) dx dt

=

N∑
j=1

λ̃2
j (M)(i)

N∑
j=1

λ2
j

. (3.2)

Here λ̃2
j (M)(i) is the j th eigenvalue of the M-modes reconstructed correlation matrix

at the ith iteration, and λ2
j is the j th eigenvalue of the ‘true’ correlation matrix. Also,

ũ(i)
M (x, t) is the M-modes reconstructed velocity field at the ith iteration while u(x, t)

is the ‘true’ field. We see that in both cases the reconstructed energy approaches
the ‘true’ energy from below. If we assume that the converged relative energy does
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Figure 6. Case A: verification of the selection criterion for the optimum number of modes
Mo = 8.

not overshoot the line eM = 1 then it is possible to identify the reconstruction which
minimizes the difference between the ‘true’ and the reconstructed energy, i.e. the curve
which is closest to eM = 1. Such identification has been made possible by a choice of
a reference level of energy e0 (see figure 5).

Note that in case D shown in figure 5(b), convergence has not been achieved within
25 iterations; in fact, full convergence reconstruction with M = 3 modes leads to the
least error. The aformentioned assumption of absence of overshoot (or undershoot,
if the reconstructed energy approaches the ‘true’ energy from above) is good if the
degree of gapiness is not very high. Based on such observations, we can now formulate
the following criterion for the selection of the optimum number of modes Mo:

Choose M such that: |EM − E0| is maximum.

Here, EM is the total energy for the converged reconstuction using M modes (i.e.
the numerator in equation (3.2)), and E0 is the total energy associated with the fixed
reference value. Application of this criterion for the flow of case A leads to the results
of figure 6 that confirm the validity of our selection criterion. Clearly, this criterion is
independent of the knowledge of the true solution. We have produced similar results
for all cases listed in table 1 that confirm this optimization criterion. For example,
the optimum number modes for case B is Mo =10, for case C is 7 and for case D is
5; in all cases the time average was used as initial guess.

In contrast, the criterion based on

πM ≡

√√√√ N∑
k=1

(
λ̃k(M)(i) − λ̃k(M)(i − 1)

)2
(3.3)

used for example in Tan et al. (2003) may not lead to the optimum number of modes
as defined here. In order to illustrate this point we plot in figure 7 πM versus the
iteration number for different reconstructions. The results indicate that with M = 4
modes we obtain the fastest convergence; however we have seen that the optimum
number of modes for reconstruction for case A is Mo = 8.
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Figure 8. Case A: error in the energy norm of the reconstructed field versus the number
of modes M .

3.1.2. Reconstructed velocity field

So far we have compared the eigenspectrum and the spatial POD modes of the
reconstructed fields with the ‘true’ field. We now turn our attention to the flow field.
First, we demonstrate that indeed the reconstructed field is most accurate for Mo =8
in the mean-square sense. In figure 8 we plot the error (in the energy norm) of the
two components of the velocity field as a function of the number of modes employed
in the reconstruction. We see that we achieve the minimum value for Mo = 8, and
the same is true for the maximum pointwise error (not shown here). Because of
the non-monotonic convergence of the Everson–Sirovich procedure with the number
modes M , we expect that for M > Mo we may add noise to the reconstructed field as
indicated by the loss of accuracy in figure 8. Indeed, this is the case as demonstrated in
the flow fields shown in figure 9. We compare here the 8th snapshot but similar results
are valid for other time instants. For a more quantitative comparison we plot the
crossflow velocity profiles in the near wake at x/d =2 and compare reconstructions
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Figure 9. Case A: comparison between the ‘true’ field (a) and the reconstructed field for the
eighth snapshot using Mo = 8 modes (c) and M = 20 (d). The figure also includes the gappy
field (b), which is the starting point of the iterative procedure. The initial guess is the time
average of the available data. Left: streamwise component; right: crossflow component.

corresponding to Mo = 8 and M =20, see figure 10. In particular, what we plot in
this figure are the interpolated data at x/d =2 using the ‘true’ DNS field, the gappy
field, and the reconstructed field. This interpolation introduces wiggles in the profile
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Figure 10. Case A: crossflow velocity profile at x/d = 2. Solid line denotes the ‘true’ velocity
profile, symbols denote the interpolated profile from the gappy field, and dashed line denotes
the interpolated profile from the recostructed field using (a) Mo = 8 modes and (b) M = 20.
The initial guess is the time average of the available data.

for the gappy field. The results corresponding to the optimum number of modes are
clearly superior.

3.2. Reconstruction based on the extended procedure

The straightforward application of the Everson–Sirovich procedure starting from
different initial guesses for the gappiness leads to different numbers of resolved
modes for the same flow field. To demonstrate this we compare the reconstructed
results corresponding to two different initial guesses for case A, which was analysed
in the previous section. Specifically, we use

(a) the time average of the available data (as before)

U (x) =
1

T

∫
T

ug(x, t) dt, V (x) =
1

T

∫
T

vg(x, t) dt, (3.4)

where ug(x, t) and vg(x, t) are the two components of the gappy velocity field;
(b) a random fluctuation defined by

ur (x, t) = U (x)fu(x, t), vr (x, t) = V (x)fv(x, t), (3.5)

where fu(x, t) and fv(x, t) are random functions following a normal probability
distribution with values in [−1, 1].

In figure 11 we plot the eigenspectra obtained starting from the random initial
guess. We note that the ‘deviation point’ (denoted by the arrow), which defines the
number of resolved temporal modes, is different for the random initial condition case.
In particular, the number of resolved modes is decreased from 8 (time-average initial
guess) to 3 (random initial guess). We found similar results for all cases listed in table 1.
For example, we found that for case D (greatest gappiness) the number of resolved
temporal modes with a time-average initial guess is 5 while with a random initial
guess it is 3. Correspondingly, for case C the number of resolved temporal modes
drops from 7 to 3.

We now apply the new procedure described in § 2. To this end, we construct a
sequence of guesses by simply increasing iteratively the number of modes used in the
reconstruction process and taking as an initial guess for the next run the converged
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Figure 11. Case A: comparison of eigenspectra obtained using a random initial guess.
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Figure 12. Case A: eigenspectra obtained with the new method iterating up to mode 8
(a) and up to mode 35 (b). The initial condition is a random guess.

guess from the previous run. In figure 12 we plot the eigenspectra obtained with the
modified procedure by iterating up to the 8th mode and also up to the 35th mode.
The results shown in this figure were obtained with the random initial values but
the same results are obtained starting from the time-average initial guess. This and
other tests we have perfomed show that the number of resolved modes obtained
with the new iterative procedure is independent of the initial guess. Such results,
in turn, suggest that the new procedure produces the maximum possible number of
resolved modes given a gappy data field. For case A this value is 27 compared to
the value 3 obtained with the standard Everson–Sirovich procedure for the random
initial condition (see figure 11). Therefore, we have increased the number of resolved
temporal modes with the extended procedure by nine times for the random initial
condition and more than three times for the time-average initial condition. Similarly,
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Figure 13. Case A: comparison of reconstructed 19th spatial mode (using the new method)
(b) with the corresponding ‘true’ DNS mode (a). Shown are isocontours of the two velocity
components. Left: streamwise component; right: crossflow component.

for case C we have increased the resolution by five times with respect to the random
initial guess and have more than doubled it with the time-average initial guess.

In order to verify that indeed the increased number of resolved modes leads to a
better representation of the velocity field we examined the accuracy of modes above
the eighth mode resolved accurately with the standard Everson–Sirovich procedure.
In figure 13 we plot isocontours of the 19th mode and compare them with the exact
mode obtained from the full DNS. We observe that the agreement is very good using
the new extended method; in fact, we have verified that this good agreement is valid
up to the 27th mode as suggested by the resolved eigenspectrum.

3.2.1. Very large gappiness

In the discussion so far we have focused mostly on case A since cases B and
C in table 1 behave similarly. We now analyse in some more detail case D that
corresponds to very large gappiness of about 78% at Re= 500. We consider again the
two aforementioned initial guesses which lead to different spectra of the reconstructed
fields. For brevity we do not show the spectra here but we have found that the resolved
number of modes is Mo = 3 for the random initial guess and Mo = 5 for the time-
average initial guess using the standard Everson–Sirovich procedure. Using the new
method and iterating up to mode 20 we obtain the same resolved eigenspectrum
(independently of the initial guess), as shown in figure 14. In particular, the number
of resolved modes for this flow field is increased to 7, i.e. we have doubled the number
of resolved temporal modes.
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Figure 14. Case D: eigenspectrum obtained using the new iterative procedure.
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Figure 15. Case D: reconstruction of (a) the first and (b) the second spatial modes.
Left: streamwise component; right: crossflow component.

However, unlike the other three cases, in case D we have realized the effects of
noise on the spatial modes as analysed in § 2.2 and directly suggested by equation
(2.25). We plot in figure 15 the two components of the first and the second spatial
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Local linear interp. Everson–Sirovich Local Kriging Extended proc.

||ũ − u||∞ 0.2664 0.0581 0.0722 0.0538
||ṽ − v||∞ 0.2443 0.09 0.0674 0.0665
||ũ − u||2 0.1630 0.0427 0.0070 0.0068
||ṽ − v||2 0.1168 0.0817 0.0051 0.0049

Table 2. Case A: maximum pointwise error (L∞) and average error (L2) for the two velocity
components using different reconstruction procedures.

Local Kriging Extended proc.

||ũ − u||∞ 1.0138 0.5628
||ṽ − v||∞ 0.4990 0.4725
||ũ − u||2 0.2379 0.1907
||ṽ − v||2 0.1106 0.1023

Table 3. Case C: maximum pointwise error (L∞) and average error (L2) for two velocity
components using the extended procedure and the local Kriging method.

mode. We see that the spatial modes are noisy although the first seven temporal
modes are resolved according to the eigenspectrum shown in figure 14. This can be
simply explained by equation (2.25) as follows. The induced error in the extended

procedure δu is such that
∫

T
δu(x, t)ψ̃1(t) dt/λ̃1 is not neglegible with respect to Φ̃1.

The perturbation δΦ1 then affects the first mode as shown in figure 15, and similarly
for mode 2. When we reconstruct the flow field we modulate the unresolved spatial
modes by the resolved temporal modes and this leads to a noisy reconstruction in the
case of very large gappiness.

3.3. Comparison with other methods

In order to appreciate the accuracy of the proposed reconstruction procedure we have
compared it to the local Kriging method, the local linear interpolation method and
also the standard Everson–Sirovich method for case A. In table 2 we summarize the
maximum pointwise errors (denoted by || · ||∞) and also the average error (denoted
by || · ||2). For the local linear interpolation method we transform every triangular
spectral element used in the mesh into a standard square element and subsequently
employ linear interpolation on the Gauss–Lobatto quadrature points in an element-
by-element fashion. For the local Kriging statistical predictor we use a Gaussian
for the covariance kernel while the regression model corresponds to a second-order
polynomial; see Lophaven, Nielsen & Sondergaard (2002) for details.

We found that the errors of the new method are lower than the ‘optimal prediction’
errors given by the local Kriging procedure, and one to two orders of magnitude
better than the linear interpolation errors. The average error (L2 norm) for the new
method is an order of magnitude lower than the error resulted by applying the
standard Everson–Sirovich method at Mo = 8; see also figure 8.

We have also performed a comparison for case C (listed in table 1) and the results
are similar to case A, see table 3. Here we have only compared the extended procedure
to the local Kriging method. The extended procedure results are better in maximum
and average errors for both components of velocity.

The clear advantage of the new proposed method compared to local Kriging
prediction is in reconstructing accurately the temporal modes. A comparison of the
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Figure 16. Eigenspectra for different reconstruction procedures. (a) case A; (b) case C.

corresponding eigenspectra for both methods is shown in figure 16. On plot (a) we
show the comparison for the small degree of gappiness (case A) and on plot (b)
the comparison for a large degree of gappiness (case C). We see that in both cases
the extended procedure resolves many more modes than the local Kriging method.
This, in turn, implies that the new extended procedure is more effective in dynamic
simulations based on gappy experimental data, as for example in the simulations
presented in Ma et al. (2003).

4. Summary
We have applied the proper orthogonal decomposition in reconstructing time-

dependent gappy flow fields by extending a procedure first suggested by Everson &
Sirovich (1995) for image processing applications. While the gappy data in this study
were generated artificially by randomly omitting data points from DNS snapshots
(MAR-type data) of flow past a cylinder, the same procedure can be applied to
experimental data obtained by PIV or MRI. The original Everson–Sirovich procedure
is based on the time-average values in the (spatio-temporal) gappy regions used as
initial guess. It was applied to image denoising and facial reconstruction in Everson &
Sirovich (1995); in Tan et al. (2003) it was applied to inviscid steady flow past an
airfoil. However, the maximum number of accurately resolved modes seems to depend
strongly on the initial guess for the missing data.

The extension we have developed employs the Everson–Sirovich procedure in
an iterative manner starting from two modes for reconstruction and producing
successively better estimates for the gappy regions. Upon convergence, a large portion
of the exact eigenspectrum is resolved which is independent of the initial conditions,
while the maximum possible spectral resolution is achieved for a given degree of
spatio-temporal gappiness in a flow field. The specific new contributions of the
current work are:

a new iterative POD/least-squares procedure that increases the maximum possible
resolution by more than five times for gappiness up to 50%;

a new robust criterion for the selection of the optimum number of modes for the
best reconstruction of the velocity field;
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an analysis and verification of the difference in resolving a temporal mode versus
resolving a spatial mode; this difference manifests itself at very large gappiness.

The robustness and effectiveness of the new iterative procedure comes at a price,
however, since it is clearly computationally more expensive than the standard
Everson–Sirovich procedure. However, it is hierarchical and can be terminated after
the most energetic modes have been identified, thus reducing the cost to a desired
level. Another potential problem is the loss of incompressibility condition in the
reconstructed fields; this is true for both the original and the modified reconstruction.
This, however, can be readily resolved by applying a Hodge decomposition of the
reconstructed flow field, separating out the divergence-free components from the curl-
free components. Computationally, this is equivalent to solving two Poisson equations
for a two-dimensional flow field. Finally, if the gappiness is not random in space and
time but it occurs, say, in a spatial region at all times then the current procedure
cannot fill in that region. If appropriate, the symmetries of the POD modes can be
used as shown in Ma et al. (2003) but in general statistical data imputation methods
should be pursued in this case, see Little & Rubin (2002) and also Aubry et al. (2003).
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